1. (i) Species with an unpaired electron \checkmark

ALLOW atom, molecule or particle with an unpaired electron ALLOW 'has an unpaired electron' ALLOW particle formed by homolytic fission DO NOT ALLOW particle with a single electron OR particle with a free electron

- (ii) catalyst ✓
- (iii) $O + O_2 \rightarrow O_3$ **OR** O reacts with O_2 to make ozone **OR** the reaction is reversible \checkmark

Rate of formation of ozone is the same as rate of decomposition \checkmark

ALLOW $O_2 + O \rightleftharpoons O_3$ OR $O_3 \rightleftharpoons O_2 + O \checkmark \checkmark$ ALLOW is in equilibrium OR \rightleftharpoons in correct equation OR has steady state condition \checkmark IGNORE other equations involving ozone

(iv) absorbs (harmful) UV \checkmark

ALLOW 'keeps out UV' OR 'filters UV' ALLOW increased UV could cause skin cancer OR increased UV could cause cataracts OR increased UV could cause mutation of crops ✓ IGNORE gamma

[5]

1

1

2

1

2

2. (i) Infrared (radiation absorbed) \checkmark

by (C–H) bond vibration \checkmark

ALLOW bond stretching OR bond bending DO NOT ALLOW molecules vibrating (ii) Greater concentration of carbon dioxide **OR** more carbon dioxide is being made \checkmark

ALLOW carbon dioxide is the main contributor to global warming DO NOT ALLOW any response that states that CO₂ causes ozone depletion ALLOW C=O bonds absorb IR more readily than C-H bonds ALLOW carbon dioxide has a greater greenhouse effect

[3]

1

3. Any five from the following:

Developing carbon capture AND storage \checkmark

carbon, capture AND storage required ALLOW CCS

One example of CCS \checkmark

Examples of CCS

Second example of CCS \checkmark

deep in the oceans *OR* on the *sea-bed* \checkmark *DO NOT ALLOW* dissolve *CO*₂ in the sea *OR* stored in ocean

storage in geological formations OR piped into disused or partially filled oil wells or porous rocks OR under the sea-bed \checkmark

Provide evidence to governments **OR** international conferences (e.g. Kyoto) **OR** reports to United Nations etc \checkmark

Educating society **OR** writing in journals **OR** producing documentaries **OR** writing books **OR** making posters \checkmark

Monitoring atmospheric changes \checkmark

by reaction with metal oxides **OR** reaction to form (solid) carbonates **OR** stored as a carbonate **OR** equation to show formation of metal carbonate ✓ **IGNORE** mineral storage Develop alternative energy sources \checkmark One example of an alternative energy source e.g. develop fuel cells **OR** developing solar power **OR** fuels that do not produce CO₂ \checkmark

ALLOW idea of biofuels only if linked to carbon-neutrality

(Develop) more efficient engines for transport OR lean burn engines OR hybrid engines OR electric cars \checkmark

> IGNORE reforestation IGNORE reference to CFCs

Find uses for carbon dioxide
OR named use:
e.g. dry cleaning OR making decaffeinated coffee
OR blowing agent OR fizzy drinks, etc ✓
DO NOT ALLOW use less carbon dioxide

[5]

4. Any two from the following:

There are times when CO_2 has a **high** concentration and the temperature is also **high OR**

There are times when CO_2 has a low concentration and the temperature is low \checkmark

ALLOW a (positive) correlation between temperature and carbon dioxide concentration but DO NOT ALLOW just 'a correlation' IGNORE 'graphs are the same shape' IGNORE 'graphs are similar'

It is impossible to measure with certainty the average temperature years ago \checkmark

There are other gases that may cause a greenhouse effect

OR

There are other factors that may cause a greenhouse effect \checkmark

There are very few anomalous results \checkmark

[2]

1

5. (i) $2CO + 2NO \rightarrow 2CO_2 + N_2 \checkmark$ ALLOW any correct multiples including fractions

IGNORE state symbols

(ii) CO and NO are adsorbed (onto surface) OR reactants are adsorbed (onto surface) ✓

weakening of bonds **OR** lowers activation energy \checkmark

CO₂ and N₂ desorbs (from the surface) **OR** products desorbs (from the surface) \checkmark

ALLOW CO and NO stick onto surface OR CO and NO form weak attractions to the surface OR gases are adsorbed onto surface NOT absorb but allow ecf for deabsorb later on IGNORE alternative pathway Requires less energy is not sufficient ALLOW products leave the surface OR products diffuse away from surface OR weak attraction to surface is broken ALLOW deadsorb

3

[4]

6. Any TWO from:

atmospheric concentration \checkmark

ability to absorb infrared radiation \checkmark

residence time \checkmark

ALLOW the amount of the gas OR abundance of gas ALLOW how much IR it absorbs OR ability to absorb heat IGNORE global warming potential / heat reflected / how much is produced ALLOW how long it stays in the atmosphere

Any TWO from:

deep in the oceans **OR** on the sea-bed \checkmark

storage in geological formations **OR** under the sea-bed \checkmark

by reaction (with metal oxides) to form carbonates \checkmark

ALLOW piped into disused or partially filled oil wells ALLOW stored as a carbonate OR equation to show formation of suitable carbonate from an oxide IGNORE mineral storage IGNORE reforestation

2

2

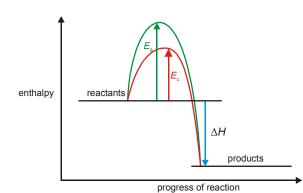
[4]

7.

(i)

 $Cl + O_3 \rightarrow ClO + O_2 \checkmark$ $ClO + O \rightarrow Cl + O_2 \checkmark$ overall: $O_3 + O \rightarrow 2O_2 \checkmark$

OR


 $Cl + CH_4 \rightarrow CH_3 + HCl \checkmark$ $CH_3 + Cl_2 \rightarrow CH_3Cl + Cl \checkmark$ overall: $CH_4 + Cl_2 \rightarrow CH_3Cl + HCl \checkmark$ Marks must come from one or other of the radical process and not from both of them. If two processes are described then an incorrect step in one process will contradict a correct step in the other process. ALLOW overall equation mark even if the steps are wrong the radicals do NOT need a single dot **IGNORE** any state symbols ALLOW $Cl + O_3 \rightarrow ClO + O_2 \checkmark$ $ClO + O_3 \rightarrow Cl + 2O_2 \checkmark$ overall: $2O_3 \rightarrow 3O_2 \checkmark$ ALLOW any saturated hydrocarbon including cyclic ALLOW ecf for second step and overall reaction if wrong

hydrocarbon used e.g. C_2H_4 is used in first step

3

(ii) ΔH shown **and** products below reactants \checkmark E_a shown \checkmark

 E_c shown $< E_a \checkmark$

NOT double headed arrows but apply ecf for more than one double headed arrow

ALLOW one mark if two correctly labelled curves are drawn but the arrows are not shown or are incorrectly drawn The arrows must be positioned as closely as possible to the maximum height of the curves but allow some degree of bod

3

[6]

8. Any TWO from:

CFCs take many years to reach the ozone layer **OR** long residence time \checkmark

CFCs are still being used \checkmark

there are other ozone depleting substances \checkmark

IGNORE because chlorine radicals stay in the stratosphere *ALLOW* other named ozone depleting substances e.g. NO and *HFCs*

[2]

9. O_2 ClO (1) (both needed)

$$O_3 + O \rightarrow 2O_2 (1)$$

[2]

10.	(i)	prod	$_{16} + 11\frac{1}{2} O_2(1) \rightarrow 7CO_2 + 8H_2O$ lucts (1) nce (1)	2	
	(ii)	abso	orb IR (1) O bonds vibrate. (1)	2	[4]
11.	The C–Halogen bond most likely to be broken is C–Br because it is the weakest bond				[1]
12.	CO from incomplete combustion/ insufficient oxygen \checkmark NO from nitrogen and oxygen in the air \checkmark				[2]
13.	(i)	C/0	$+ \mathbf{O} \rightarrow Cl + O_2 \checkmark$	1	
13.			$+ \mathbf{O} \rightarrow \mathbf{C}_{l} + \mathbf{O}_{2} \checkmark$ $+ \mathbf{O} \rightarrow \mathbf{2O}_{2} \checkmark$		
	(ii)	5	-	1	
	(iii)	effec	et of uv radiation/ homolytic fission/ et of sunlight ✓ EFCs/ on chlorocarbons ✓	2	
	(iv)	incre	ease (skin cancer) 🗸	1	[5]
14.	(a)	(i)	$C_8H_{18} + 121/2O_2 \rightarrow 8CO_2 + 9H_2O$		
17,	(<i>a</i>)	(1)	reagents and products (1)		
			balancing (1)	2	
		(ii)	from nitrogen in air and oxygen (1)	1	
	(b)	(i) (ii)	any two from Pt/ Rh/ Pd	1	
		(ii)	adsorbed (1) bonds within molecule weakened (1)		
			desorbed/ description (1)	3	
		(iii)	$CO + NO \rightarrow 1/2N_2 + CO_2$	2	
		()	reagents and products (1)		
			balancing (1)	2	
				-	

(c) ozone/ NO_2 / nitric acid (1)

[10]

1

- **15.** No mark scheme available
- **16.** No mark scheme available